Sports Biomechanics Lab > Lab Members > Jason Moore > Exit Seminar Abstract
Personal tools

Exit Seminar Abstract

Th abstract for my exit seminar.

Human Control of a Bicycle

Jason K. Moore

4:10 pm, May 10, 2012

1062 Bainer Hall

Studious Bear

For the non-nonsensical it may be best to skip to the last section...

Unlike the plethora of scientific opuses that reveal how the average Ursidae (bear) can balance on a bicycle, little has been garnered about how Homo sapiens is able to accomplish this feat. When the rider's normal locomotion instruments for continual balance are replaced by two in-line wheels connected to one another by a manipulatable semi-vertical revolute joint the rider is then forced to direct his mental energy to observing the additional states of the bicycle's configuration and the proper actuation of his arms to maintain vertical equilibrium. It was found that this "simpler" task is well suited for manual control theoretic dissection and postulation.

I will herein present the findings of the seventh age of my tenure as a doctoral candidate in the prefecture of Mechanical and Aerospace Engineering at the Davis campus of the University of California. These describe our experimental procedure which involved strapping the untamed and aggressive Homo sapiens to a velocipede of extraordinary measurement capabilities. We perturbed the beasts as they tried with all their mental and physical might to stay upright, constrained as they were. Following more than seven hundred trials with three hand-picked quality specimens, the clouds of data have shaped into more than distant blurs. The control and identification tools of Bode, Evans, and Ljung combined with the modern day data management tools of van Rossum, Moler, and Torvalds have shed light on the details of the sensory feedback mechanisms present in the neurological pathways connecting the Homo sapien's senses to his actuators. To the bear's dismay, this has in turn revealed that the highly regarded 1899 bicycle model of Whipple is sorely lacking and that the control theoretic hypothesis of McRuer for the great aeroplane pilots of yesteryear does, in fact, apply to the human control of a machine as simply complex as the bicycle.

The seminar will provide the audience with a glimpse into the reductio complexio of the physiological system of the greater Homo sapiens by forced travel on the automatic velocipede with highlights of manual control theories, inertial investigations, data wrangling, and of course demonstrations of the magical-like auto stability of the bicycle.

The sensical...

The paragraphs above may have intrigued you enough to join me at the seminar, or you may think I'm off my rocker due to the high stress of finishing a PhD at UC Davis. Either way, for those of you who'd rather read a more traditional exit seminar abstract here is a quick explanation of the above in plain modern Engineering English:

The bicycle, a simple toy to many, turns out to be an excellent platform to study the intricacies of human-machine interaction and human operator control for both dynamic and economical reasons. The bicycle is inherently unstable at low speeds and the human generally actuates the non-minimum phase system, and thus balances, only by means of rotating the handlebars. In the talk, I will describe a multi-year multi-person effort to better understand the dynamics of the bicycle, the biomechanics of the rider, and the rider's internal control system through theory and extensive experimentation. The work has revealed a number of interesting facts including the primary actuators used by the human, effects of the rider's motion on the bicycle's stability, the inadequacy of the canonical bicycle model, and the ability of a simple multi-output control system formulated around the classical crossover model to describe the human's control efforts. These findings have implications in both single track vehicle design theory and human-machine interaction theory.

For more information on the topic you may peruse our informational page or you may watch the motion picture on the research.

Document Actions